Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications

نویسندگان

  • Nicolai Bissantz
  • Thorsten Hohage
  • Axel Munk
  • Frits Ruymgaart
چکیده

During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as ν-methods and the Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrixvector products. Our results are applied to various problems, in particular we obtain precise convergence rates for satellite gradiometry, L2-boosting, and errors in variable problems. AMS subject classifications. 62G05, 62J05, 62P35, 65J10, 35R30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Iterative Inversion Methods for Statistical Inverse Problems

In this paper we discuss general regularization estimators. This class includes Tikhonov type and spectral cut-off estimators as well as iterative methods, such as ν-methods and the Landweber iteration. The latter estimators achieve the same (optimal) convergence rates as spectral cut-off, but do not require explicit spectral information on the operator and are often much faster to compute than...

متن کامل

Convergence rates of spectral regularization methods for statistical inverse learning problems

Consider an inverse problem of the form g = Af , where A is a known operator between Hilbert function spaces, and assume that we observe g at some randomly drawn points X1, ..., Xn which are i.i.d. according to some distribution PX , and where additionally each observation is subject to a random independent noise. The goal is to recover the function g. Here it is assumed that for each point x t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007